Влияние внешней среды на развитие организма. Критические периоды в онтогенезе человека. Тератогенные факторы. Аномалии и пороки развития. Влияние факторов окружающей среды на эмбриогенез человека. Тератогенные факторы Тератогенный и эмбриотоксический эффе

Отдельные токсические вещества при поступлении в организм животных вместе с кормом или в результате обработок могут отрицательно влиять на репродуктивную функцию животных, вызывая эмбриотоксическое, тератогенное, гонадотоксическое действие. По этой причине токсические вещества, которые могут поступать в организм животных с кормом постоянно или в течение определенного периода, должны подвергаться исследованию на эмбриотоксичность, тератогенность и гонадотоксичность. Также целесообразно исследовать на наличие этих действий некоторые лекарственные препараты и премиксы, если их используют многократно.

Эмбриотоксическое действие. Это способность исследуемого вещества отрицательно действовать на развивающиеся эмбрионы. В медицинской токсикологии эмбриотоксическое действие изучают на самках белых крыс, которым в течение всей беременности вводят внутрь через зонд или дают с кормом препарат. На 17-19-й день беременности, начало которой устанавливают по результатам исследования вагинальных мазков, крыс убивают, подсчитывают число плодовместилищ, желтых тел в яичниках, живых и мертвых плодов. Сравнивая результаты этих исследований в опытной и контрольной группах, устанавливают степень эмбриотоксической активности препарата. Часть беременных крыс из опытных групп оставляют для родов, при этом учитывают продолжительность беременности, число плодов, их массу, длину туловища новорожденных крысят, их развитие (увеличение длины и массы за определенный срок, время открытия глаз, покрытия шерстью, начала самостоятельного передвижения по клетке и поедания корма). Кроме того, учитывают выживаемость крысят, распределение их по полу. При этом отмечают: избирательную эмбриотоксичность - эффект проявляется в дозах, не токсичных для материнского организма; общую эмбриотоксичность - проявляется одновременно с развитием интоксикации организма матери; отсутствие эмбриотоксичности - эффект не отмечается при признаках интоксикации материнского организма (Медведь, 1968).

Каких-либо методических подходов к определению эмбриотоксических свойств препаратов ветеринарного назначения нет.

I la первых этапах, по-видимому, целесообразно в качестве модели использовать также белых крыс, так как опыты на сельскохозяйственных животных затруднительны из-за продолжительных сроков беременности и сравнительно небольшого числа особей в помете (за исключением свиней). В том случае, если будет установлено, что исследуемые соединения обладают общей или избирательной эмбриотоксичностью, ставят опыты на животных, и прежде всего на свиньях. Препараты в зависимости от их целевого назначения и способа применения целесообразно давать с кормом, вводить внутримышечно или наносить накожно.

Тератогенное действие. Это такое действие, при котором нарушается формирование плода в период его эмбрионального развития. Проявляется оно в виде уродств. Тератология как наука получила развитие после случаев с талидомидом - лекарственным препаратом, широко применявшимся беременными женщинами в Западной Европе в качестве снотворного и седативного средства. В результате было зафиксировано рождение детей с врожденными пороками развития.

В медицинской токсикологии тератогенное действие пестицидов определяют на белых крысах. Для этого препарат животным вводят внутрь через 1 день в течение всей беременности. Часть животных опытных групп убивают на 17-20-й день беременности, часть оставляют до родов. При вскрытии убитых крыс определяют среднее число желтых тел на одну самку, нормально и ненормально развивающихся зародышей, а также резорбтированных плодов.

При естественных родах учитывают число родивших самок, народившегося потомства, в том числе мертворожденных, устанавливают среднюю массу потомства, длину туловища, конечностей и другие морфологические особенности (Медведь, 1969).

Тератогенное действие препаратов на сельскохозяйственных животных не изучают.

При проявлении тератогенного эффекта возможны следующие уродства: отсутствие головного мозга (анэнцефалия); недоразвитие головного мозга (микроцефалия); повышенное содержание цереброспинальной жидкости в желудочках головного мозга (гидроцефалия); мозговая грыжа (энцефалоцелия); расщепление первых дужек позвонков (спина бифида). Кроме того, возможны анормальности в других органах: отсутствие глаз (анофтальмия); наличие одного глаза (циклопия); заячья губа; волчья пасть; отсутствие конечностей (перамилия); отсутствие хвоста; укорочение хвоста и др.

Гонадотоксическое действие. При изучении гонадотоксического действия устанавливают влияние исследуемого препарата отдельно на половую сферу самок и самцов. Опыты проводят на белых крысах. На самках исследуют действие препарата на астральный цикл и овогенез, на самцах - на подвижность, морфологию, рези-стентность спермиев и сперматогенез.

Эстральный цикл определяют, исследуя мазки из влагалища. Для этого глазной пипеткой вводят во влагалище подогретый физиологический раствор (2-3 капли), несколько раз пропускают его через пипетку, а затем вводят обратно во влагалище. После этой процедуры с помощью предметных стекол готовят мазки из влагалища, фиксируют их над пламенем и окрашивают в течение 1 мин 1%-ным водным раствором метиленовой сини. Мазок просматривают под микроскопом при малом увеличении.

Различают следующие основные стадии эстрального цикла:

Фаза проэструса (предтечки) продолжается несколько часов и характеризуется преобладанием в мазках эпителиальных клеток;

Фаза эструса (течки) продолжается 1-2 дня. В этой стадии в основном присутствуют ороговевшие полигональные клетки (чешуйки);

Метэструс (послетечка) имеет длительность 1-2 дня и характеризуется присутствием наряду с чешуйками эпителиальных клеток и лейкоцитов;

Фаза диэструса (фаза покоя между течками) характерна присутствием лейкоцитов и слизи. Продолжительность этой фазы равна половине всего цикла.

Изменение продолжительности стадий эстрального цикла или характера клеток на различных его стадиях является показателем действия исследуемого вещества.

Для изучения действия химического вещества на овогенез готовят гистологические срезы из яичников и определяют стадии развития фолликулов в опытных и контрольных группах животных.

При изучении гонадотоксического действия препаратов на самцов определяют соотношение подвижных и неподвижных форм спермиев, наличие патологических форм, их резистентность и фазы сперматогенеза (Медведь, 1969).

Мутагенное действие. Некоторые химические вещества нарушают передачу генетической информации, вследствие чего возможно появление мутантов - особей с признаками, не свойственными данному виду. Поэтому изучение мутагенных свойств пестицидов и других химических веществ - один из необходимых этапов токсикологического исследования. В ряде стран с этой целью используется скрининговый тест - тест Эймса. В качестве тест-организма используются отдельные штаммы бактерий группы сальмонелл, высокочувствительных к химическим мутантам. При наличии потенциальной мутагенности у исследуемого химического вещества происходит расщепление генов и резко возрастает количество колоний на плотной питательной среде. Однако мутагенность химического вещества, выявленная с помощью этого теста, не может быть признана абсолютной, так как высшие животные имеют мощные защитные системы, которые предохраняют клетки, ответственные за передачу генетической информации, от воздействия внешних факторов, в том числе и химических веществ. Во многих случаях под действием ферментных систем химическое вещество может быть детоксицировано, прежде чем оно достигнет «мишени».

Еще по теме ЭМБРИОТОКСИЧЕСКОЕ, ГОНАДОТОКСИЧЕСКОЕ, ТЕРАТОГЕННОЕ И МУТАГЕННОЕ ДЕЙСТВИЕ ТОКСИЧЕСКИХ ВЕЩЕСТВ:

  1. Нежелательное действие лекарственных веществ. Побочные эффекты аллергической и неаллергической природы. Синдром отмены. Токсическое действие лекарств. Эмбриотоксичность. Тератогенность. Мутагенность. Канцерогенность.
  2. К вопросу об использовании микроядерного теста для оценки мутагенного действия раннего периода описторхозной инвазии на мышей
  3. ЯДОВИТЫЕ (ТОКСИЧЕСКИЕ) ВЕЩЕСТВА И ИХ КЛАССИФИКАЦИЯ
  4. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТОКСИЧЕСКИХ ВЕЩЕСТВ В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ, ТКАНЯХ ЖИВОТНЫХ И ПРОДУКТАХ ЖИВОТНОВОДСТВА

Диоксин – это ядовитое вещество, обладающее сильным иммунодепрессантным, мутагенным, канцерогенным и эмбриотоксическим действием. Риск заражения есть даже при осуществлении обычных бытовых процессов – кипячении водопроводной воды, стирке белья и употреблении блюд из жирного мяса.

Попадая с водой, пищей или воздухом в организм человека, яд вызывает серьезные нарушения процессов обмена, деления клеток, работы иммунной и эндокринной систем. Он стимулирует развитие злокачественных опухолей, пагубно воздействует на репродуктивную сферу у мужчин и женщин, поражает эмбрионы и становится причиной уродств и недоразвитости новорожденных.

Что такое диоксин?

Диоксины – группа сложных соединений, относящихся к хлористым производным органической химии. Это экотоксикант – вещество, образующееся исключительно в результате деятельности человека и противоестественное для окружающей среды. Относится к группе ксенобиотиков и является синтетическим кумулятивным ядом – накапливается в жировых клетках организма и очень медленно выводится. Период полураспада – от 7 до 11 лет.

Скопление яда в организме крайне отрицательно влияет на здоровье и приводит к тяжелейшим заболеваниям – раку, мутациям эмбрионов, хлоракне, поражениям печени, «химическому СПИДу».

Доза яда, вызывающая летальный исход, в тысячи раз меньше летальной дозы некоторых отравляющих веществ, применяемых в условиях боевых действий – например, зарина, зомана, табуна.

Образование и механизм токсического действия

Диоксины выделяются в результате взаимодействия хлористых соединений с органическими при высоких температурах. Чаще всего подобное происходит в промышленности – яды появляются в отходах и сточных водах предприятий металлургической, целлюлозно-бумажной, химической отрасли.

Известным примером глобального выброса диоксинов стала техногенная катастрофа в 1976 году в итальянском городе Севезо, на одном из химических предприятий которого произошел выброс облака яда в окружающую среду. В результате много лет после катастрофы в близлежащих городах рождались дети с болезнями и мутациями, а число патологий и смертность увеличились в разы.

Хлорфенольные пестициды часто используют для обработки растений от вредителей, а также для дефолиации. Если загорится лес, обработанный такими гербицидами, в атмосфере значительно увеличится концентрация диоксинов. Примером является дефолиация лесов во время Вьетнамской войны, когда после применения смеси синтетического происхождения Agent Orange пострадало целое поколение вьетнамцев.

Кроме того, по всему миру до сих пор существует много несанкционированных свалок. При сжигании техногенного мусора в воздух попадает большое количество отравляющих веществ.

Образуются ли диоксины при кипячении воды?

При кипячении чистой природной воды количество образующихся ядовитых веществ ничтожно мало. Оно гораздо выше при использовании воды из-под крана, содержание хлора в которой достаточно велико. Образование диоксинов при ее кипячении влечет за собой плохое самочувствие, слабость, снижение иммунитета.

Пути проникновения в организм

Диоксин поступает в организм человека с воздухом, водой и пищей, практически не имея преград. При вынашивании ребенка он попадает с плацентарной жидкостью. Значительное превышение уровня опасного соединения обнаруживается в воздухе городов и поселков, окружающих промышленные предприятия и находящихся на крупных автострадах. Лучшая среда для оседания этого вещества – жировые клетки.

Самые распространенные источники токсина среди пищевых продуктов:

  • жирное мясо (свинина, баранина и др.);
  • куриные яйца;
  • жирная рыба (сельдь, сом и т. д.);
  • молоко и молочные продукты;
  • листовые растения.

Кроме того, при стирке хлорсодержащие средства контактируют с органическими соединениями на одежде, вследствие чего образуются яды.

У вещества нет запаха и вкуса, оно прозрачно, поэтому очень сложно понять, что произошло отравление.

Признаки интоксикации

В повседневной жизни, при отсутствии техногенных катастроф, диоксины накапливаются в человеческом организме долгие годы. При отравлении ими, носящем хронический характер, наблюдаются:

  • Появление хлоракне – специфических воспалений кожных покровов.
  • Нарушение работы эндокринной и нервной систем.
  • Поражение покровов тканей и оболочек внутренних органов.

При значительном количестве отравляющего вещества появляются симптомы острой интоксикации:

  • В течение первых 2-4 дней – слабость, головокружение и легкая тошнота.
  • Покраснение и зуд кожи, возникновение рубцов в массовом порядке, хлоракне, пигментные пятна на веках и за ушами.
  • Постоянная головная боль, ухудшение зрения.
  • Снижение аппетита и, как следствие, потеря до трети массы тела.
  • Сильная раздражительность, сонливость.
  • Кашель, одышка, отхождение мокроты.
  • Замедление регенеративных процессов кожных покровов: появившиеся раны на коже практически не заживают.
  • Сильная отечность лица.

Если рассматривать каждый из симптомов в отдельности, легко можно перепутать отравление диоксинами с другими заболеваниями. Для установления правильной клинической картины необходимо обращать внимание на все признаки в совокупности.

Медицинская помощь при отравлении

Важно! Специфического антидота к диоксинам не существует.

Одна из особенностей отравления диоксинами – неуникальность симптомов. В домашних условиях сложно определить, что причиной плохого самочувствия являются именно эти вещества. Поэтому прежде всего необходимо немедленно отвезти пострадавшего в стационар для сдачи анализов.

Последствия воздействия диоксина на организм

Отравляющее вещество не только самостоятельно вмешивается в нормальную работу клеток, повреждая их ферменты, но и усиливает действие прочих токсинов – нитратов, хлорфенолов, и ртути. Организм становится более восприимчивым к воздействиям ионизирующей радиации.

Основные последствия интоксикации:

  1. Снижение иммунитета из-за нарушения деления клеток, вплоть до «химического СПИДа».
  2. Развитие злокачественных опухолей.
  3. Сбои в работе эндокринной системы, расстройство процессов обмена.
  4. Увеличение риска бесплодия либо появления детей с серьезными проблемами развития и даже мутациями.

Профилактика отравлений

Появление диоксинов связано с повсеместным загрязнением окружающей среды. Особенно опасны массовые сжигания пластмасс и загрязнение воды отходами предприятий. Избежать контакта с ядами невозможно, но можно снизить риск их поступления в организм.

Профилактические меры:

  1. Продукты растительного и животного происхождения желательно выбирать из ассортимента фермерских предприятий, расположенных в экологически чистых районах.
  2. Отказаться от приобретения продуктов питания импортного происхождения из-за большого количества нитратов и консервантов.
  3. Снизить употребление жирной пищи (свинины, сельди и т.п.).
  4. В домашних условиях не использовать для питья хлорированную воду.
  5. Избегать выбора места жительства рядом с заводами или фабриками, а также вблизи полигонов бытовых отходов.

Страница 30 из 36

Эмбриотоксическое и тератогенное действие компонентов полимерных материалов. Эмбриотоксическую и тератогенную активность химических веществ объединяет общность условий воздействия химических агентов на организм беременных. При этом под эмбриотоксическими эффектами подразумевают внутриутробную гибель эмбрионов, снижение их количества, массы и размеров. Тератогенный эффект включает морфологические и функциональные дефекты развития органов и систем плода.
Механизм эмбриотоксического действия весьма сложен и еще недостаточно изучен. Неясная связь указанного эффекта со строением молекулы действующего вещества. Обнаружено вредное действие на эмбриональное развитие ароматических и непредельных углеводородов, амидов кислот, полихлорированных и оксисоединений. В настоящее время экспериментально и клинически установлено эмбриотоксическое и тератогенное действие многих химических веществ, способных мигрировать из полимерных материалов в окружающую среду, хотя избирательность такого действия доказана не всегда.

Последнее обстоятельство снижает практическую ценность этих данных для гигиены.
И. В. Саноцкий и В. Н. Фоменко (1979) изучали зависимость эмбриотоксического эффекта от продолжительности и сроков введения яда в материнский организм. Авторы пришли к выводу о возможности развития адаптации к действию токсических веществ во время беременности.
Проницаемость плаценты зависит от ее структуры и типа, состояния организма матери, срока беременности и строения химического агента. Способность чужеродных для организма веществ проникать через плацентарный барьер зависит от физико-химических свойств соединений. Попадая в организм матери тем или иным путем, химическое вещество оказывает на плод не только прямое (трансплацентарное проникновение препарата), но и косвенное действие, которое зависит от изменений, возникающих в организме матери под их влиянием (Л. С. Сальникова, 1969).
Первые экспериментальные исследования по выявлению тератогенного действия химических веществ проведены в 1950 г. Развитие тератологии как науки, установление причинной связи между повсеместным распространением химических веществ и ростом числа уродств у новорожденных привели к тому, что в рамках экспериментальной гигиены возникло направление исследований, ставящее своей целью изучение и регламентацию химических веществ, обладающих тератогенными свойствами. В последние годы область тератологии значительно расширилась и охватывает все структурные и функциональные нарушения организма, которые возникают в процессе эмбрионального развития (А А. Динерман, 1980). Поскольку врожденные пороки развития принадлежат к числу необратимых процессов, тератогены даже в небольших количествах, не представляющих большой опасности для взрослого человека, могут вызывать иногда даже смертельно опасные генетические последствия для будущих поколений.
Из 83 веществ, влияющих на эмбриогенез, для 48 установлены ПДК в воде с учетом этого воздействия (Г. Н. Красовский и соавт., 1985). По мнению А. П. Дыбана (1976), большинство химических соединений, попадая в организм в определенные сроки беременности, в соответствующих дозах могут вести к гибели эмбриона. Однако лишь немногие из них рассматриваются как тератогены.
Важнейшей задачей экспериментальной гигиены является изучение закономерностей индуцированного тератогенеза для прогнозирования указанной опасности на основании зависимости структура - активность. Поскольку пусковые реакции для тератогенного и мутагенного эффекта могут быть общими (мутации, хромосомные аберрации, нарушение митоза, изменения нуклеиновых кислот), а проявления - однотипными, значительную степень опасности представляют химические соединения, обладающие мутагенным и тератогенным эффектом (формальдегид, хлоропрен, оловоорганические соединения и т. д.). Установлено, например, что свинец и кадмий проявляют выраженный синергизм влияния на репродуктивную функцию. При определении гигиенических регламентов, ДУ и ПДК показатели нарушения эмбрионального развития используются наравне и не уступают по значению остальным, традиционно учитываемым показателям состояния организма.
Несмотря на то что наиболее трагическое в истории тератологии событие обнаружено при анализе эпидемиологических данных (W. Lenz, W. McBride, 1960), основным приемом выявления новых тератогенов в гигиене являются экспериментальные исследования. Основными принципами экспериментальной тератологии по J. Wilson (1977) являются следующие.

  1. Чувствительность к тератогенезу связана с генотипом зародыша и характером его взаимодействия с внешними факторами.
  2. Чувствительность к действию тератогенов варьирует в зависимости от стадий развития, на которые приходится воздействие (см. концепцию П. Г. Светлова о критических периодах развития, т. е. о неодинаковой повреждаемости зародыша на разных стадиях эмбриогенеза).
  3. Тератогенные агенты действуют на развивающиеся клетки специфически, вызывая начальные нарушения эмбриогенеза.
  4. Конечными проявлениями нарушения развития являются гибель, уродства развития, торможение роста и функциональные изменения.
  5. Проявление неблагоприятного влияния внешних факторов на развивающиеся ткани зависит от природы воздействующего агента.
  6. Проявление нарушений развития от полного отсутствия эффекта до 100 % гибели усиливается в степени, соответствующий увеличению концентрации действующего агента.

В последние годы все реже прибегают к изучению тератогенеза на куриных эмбрионах ввиду трудности экстраполяции полученных данных на человека. Установлено, что все тератогенные для человека вещества оказывают в той или иной мере аналогичный эффект у мышей, крыс и кроликов. Однако оценка отрицательного результата, полученного в исследованиях на этих животных, затруднена, так как даже классический тератоген для человека - толидамид вызывает уродства не у всех видов животных. В докладах ВОЗ (1968) отмечается, что одной из причин трудности интерпретации экспериментальных материалов является недостаток информации о механизмах тератогенеза, особенностях метаболизма ядов у человека и животных, различиях во взаимодействии между двумя биологическими системами - организмов матери и плода у человека и животных. Однако литературные данные показывают достаточно хорошее совпадение тератогенных эффектов и вызвавших их доз у человека и животных. Большую надежность результатов обеспечивает использование в эксперименте нескольких видов лабораторных животных.
Согласно опубликованным результатам исследований, одни вещества оказывают тератогенное действие в очень малых, подпороговых по общетоксическому признаку дозах, другие - наоборот, только в токсических. При этом разница в дозах может вызвать либо эмбриотоксический, либо тератогенный эффект.
FDA рекомендует осуществлять хроническую затравку животных, а не однократную или краткосрочную. Путь введения вещества в эксперименте должен отвечать реальным условиям контакта с ним населения. Толидамид, например, не дает эффекта у мышей при внутрибрюшинном введении, но проявляет его при пероральном поступлении. Важен срок введения вещества во время беременности. Введение вещества до имплантации уродств не вызывает: если вещество токсично, яйцо может погибнуть, если малотоксично, его влияние на плод может быть компенсировано. Особенно высока чувствительность к тератогенам в период органогенеза и в последние дни беременности. Недостаточно учитывать эффект по эмбриональной смертности и морфологическим аномалиям у плодов. Необходимо изучать биохимические и физиологические отклонения, проявляющиеся в постнатальном периоде, а также поведенческие реакции как существенный критерий тератогенеза.
Современные методы оценки тератогенной активности не являются универсальными и надежными, так как в большинстве случаев учитываются лишь эмбриональная смертность и морфологические изменения у выживших плодов. Этими показателями не исчерпываются все последствия повреждающего действия внешних факторов на эмбриогенез, поскольку функциональные и биохимические нарушения остаются вне поля зрения исследователя (Л. В. Марцонь, В. О. Шефтель, 1979). Эти трудности связаны с тем, что развивающийся зародыш представляет собой быстро меняющуюся многокомпонентную систему, по-разному реагирующую на одни и те же воздействия на различных стадиях эмбриогенеза. Это ведет к многообразию механизмов тератогенеза. Экспериментальной тератологии принадлежит решающая роль в изучении общих закономерностей и особенностей проявления врожденных пороков у человека. В основе возникновения пороков развития, по мнению многих авторов, лежат патогенетические механизмы, действующие на клеточном, тканевом и органном уровнях. Так, патогенетические механизмы на уровне клетки сводятся к угнетению пролиферативной активности, гибели, нарушению механизмов клеточных мембран и миграционных свойств клеток, задержке и искажению путей дифференцировки.
Патогенетические механизмы врожденных пороков развития на тканевом уровне касаются массовой, невосполнимой клеточной гибели в зачатках, главным образом, за счет обширных геморрагий и других сосудистых нарушений. Пороки развития уже сформированных зачатков (органный уровень) могут быть следствием амниотических перетяжек, уменьшения объема амниотической жидкости, дисфункции плаценты.
Предполагаемые эффекты не всегда удается выявить, так как перечисленные изменения могут устраняться или закрепляться другими новыми воздействиями, что, в свою очередь, вызовет ответную реакцию. Хотя, как и при оценке других отдаленных эффектов, окончательную характеристику реальной тератогенной опасности химических веществ можно получить только в результате клинических и эпидемиологических исследований, экспериментальной тератологии принадлежит решающая роль при разработке научно обоснованных гигиенических регламентов миграции вредных веществ из полимерных материалов (Л. В. Марцонь, В. О. Шефтель, 1976).
Вследствие несовершенства и определенной неадекватности применяемых методик интерпретация экспериментальных данных, полученных при изучении тератогенных свойств ПМ и их компонентов, должна быть осторожной. Необходимо учитывать ориентировочные данные, полученные при изучении слабых тератогенов. Поэтому в ряде случаев положительные результаты подтвердить сложней, чем отрицательные. В связи с этим большое значение приобретают экспериментальные данные, которые не только свидетельствуют о возможности тератогенного действия вещества, вводимого в большой дозе, но и способствуют установлению порога действия, а также характеризуют зависимость доза - эффект и время - эффект. Пока еще нельзя предсказать возможность тератогенного эффекта по структуре соединения.
В настоящее время установлены эмбриотоксические и тератогенные свойства многих мономеров, пластификаторов, растворителей и других компонентов пластических масс, способных активно выделяться из материалов в окружающую среду. И. В. Саноцкий и В. Н. Фоменко (1979) отмечают, что при ингаляционном воздействии эмбриотоксическими и тератогенными свойствами обладают такие мономеры, как уретан (1 мг/м3), этиленимин (12 мг/м3), хлоропрен (0,13 мг/м3), формальдегид (0,5 мг/м3). Винилхлорид снижает плодовитость мышей без ущерба для здоровья потомства (J. Fabricant, 1980). Этиленимин может прерывать беременность. Пороговая доза его при внутрижелудочном введении- 1 мг/кг (А. В. Беспамятнова и соавт., 1970). И. В. Силантьева (1972) установила пороговую концентрацию этиленимина по эмбриотоксическому эффекту на уровне 0,2 мг/м3 и показала, что концентрация пиперидина, равная 2 мг/м3, вызывает минимальный эмбриотоксический эффект. F. L. Murray (1978) отмечает, что акрилонитрил в дозе 65 мг/кг проявляет эмбриотоксическое и тератогенное действие. A. R. Singh и соавторы (1972), вводя животным внутрибрюшинно большие дозы акриловых мономеров (этилакрилат, бутилметакрилат, метилметакрилат), обнаружили увеличение числа резорбированных плодов и уменьшение массы их тела. Ингаляционное воздействие этилакрилата в концентрации более 150 ppm в период органогенеза не оказало тератогенного эффекта (J. S. Murray и соавт., 1981). Введение стирола в дозе 1,35 г/кг на 17-й день беременности вдвое увеличило гибель плодов у крыс (V. Ponomarkov, L. Tomatis, 1979). При ингаляционном воздействии порог эмбриотоксического эффекта был на уровне ПДК (Н. Ю. Рагулье, 1974). Согласно В. П. Ильину (1980), эмбриотоксический эффект формальдегида проявляется в дозе 0,8 мг/кг, вводимой в течение всей беременности.

Л. С. Сальникова и соавторы (1972) при воздействии формальдегида на белых крыс на протяжении всей беременности на уровне 0,006 и 0,0006 мг/л обнаружили ряд изменений у беременных самок. Эмбриотоксический эффект не выявлен. Некоторые изменения у потомства авторами не рассматриваются как специфические. 0,5 мг/кг хлоропрена вызывает значительное увеличение общей эмбриональной смертности. У плодов наблюдается гидроцефалия, кровоизлияние в грудную и брюшную полости (Л. С. Сальникова, В. Н. Фоменко, 1975).
Высокие концентрации акриламида в воде увеличивают процент постимплантационной гибели эмбрионов (Н. Zenick и соавторы, 1986). Согласно Л. В. Марцонь (1984), капролактам не проявляет эмбриотоксического действия.
Эмбриотоксическим действием отличаются некоторые растворители, используемые при изготовлении пластмасс. Это циклогексаион в концентрации 105,2 мг/м3 (И. В. Саноцкий, В. Н. Фоменко, 1979) и диметилформамид на уровне ПДК. Причем последний поражает эмбрионы крыс и кроликов также при нанесении на кожу (Е. F. Stula, W. S. Krause, 1977). Введение крысам изобутилового спирта в дозе 0,05 мг/кг влияет на развитие беременности (В. Г. Надеенко и соавт., 1980); 0,018 мг/кг являются подпороговой дозой изопропилового спирта по эмбриотоксическому эффекту (В. И. Антонова, З. А. Салмина, 1978). Вдыхание самками крыс этилбензола в концентрациях более 2,4 г/м3 задерживает развитие скелета у плодов, уменьшает массу тела и увеличивает частоту появления добавочных ребер (Е. Tatraietal, 1982). Согласно И. В. Низяевой (1982), концентрация ацетона в воздухе 30 мг/м3 оказывает на крыс эмбриотоксическое действие.
Л. С. Сальникова и соавторы (1972) выявили увеличение эмбриональной смертности у крыс при воздействии на беременных самок диаметилформамида (ДМФ) в концентрации в 2,5 раза ниже ПДК. В ГДР проводилось нормирование содержания диметилформамида в воздухе рабочей зоны фабрики полиакрилнитрильного волокна. Поводом к изучению послужили наблюдения за работающими на фабрике женщинами. Кроме того, было известно, что формамид и монометилформамид обладали тератогенным действием (В. Шюттек, 1982).
Животных подвергали влиянию ДМФ в концентрации 400 ррпт (что составляет 1/10 от суточной ЛK50) с 10-го по 20-й дни беременности по 4 ч ежедневно. В результате обнаружено достоверное увеличение резорбции плодов и снижение плодовитости. Тератогенный эффект не выявлен. В. Шюттек (1972) считает, что это связано с отсутствием в ДМФ группы - CO = NH, ответственной за тератогенный эффект у формамида, этилуретана и др. Эпидемиологические наблюдения подтвердили наличие эмбриотоксического эффекта у работниц, подвергавшихся его воздействию в производственных условиях.
Установлены эмбриотоксические и тератогенные свойства некоторых металлов, используемых в синтезе пластмасс. Аномалии развития наблюдаются только при воздействии высоких доз хрома (III), причем неясно, является ли это результатом действия на плод или материнский организм. На хомячках обнаружено тератогенное и эмбриотоксическое действие хрома (VI; IARC monographs, 1980).
Добавление 0,4 % цинка в рацион беременных животных приводит к уменьшению массы плодов и снижению активности цитохромоксидазы печени. Имплантация цинка до спаривания и во время беременности вызывает уменьшение мест имплантации у кроликов (I. Zipper и соавт., 1964). При внутрижелудочном введении вещества в дозах 5 мг/кг (6 мес) и 100 мг/кг (1 мес). Р. В. Меркурьева и соавторы (1979) отмечали эмбриотоксический эффект. В. Г. Надеенко и соавторы (1980) обнаружили эмбриотоксическое действие кобальта и меди, вводимых крысам с питьевой водой в концентрации 1 мг/л. Согласно данным G. L. Kennedy и соавторов (1975), 714 мг/кг свинца прерывает беременность, задерживает развитие выживших эмбрионов крыс. Аномалии развития при этом не обнаружены. Введение хомячкам различных солей свинца в дозе 50 мг/кг на 8-й день беременности приводит в большинстве случаев к возникновению уродств у потомства (V. Н. Ferm, S. I. Carpenter, 1967). По данным Н. A. Schroeder, М. Mitchener (1971), аномалии развития наблюдаются при содержании в питьевой воде даже 25 мг/л вещества.
Внутрибрюшинное введение 2,5 мг/кг кадмия с 7 по 21-й день беременности уменьшает массу эмбрионов, вызывает у них появление уродств и некротических изменений (G. Krause-Fabricius,. 1976, 1977). Подкожное введение алюминия замедляет прирост массы тела матерей-крольчих и их потомства. У последних нарушаются поведенческие реакции (R. A. Yokel, 1985).
Некоторые компоненты резин способны оказывать вредное действие на эмбриональное развитие. Каптакс (меркаптобензотиазол) при введении на 8-й или 10-й день беременности уменьшает число живых плодов (Д. И. Вайтекунене, К. Г. Санатина, 1969). Эмбриотоксическим и тератогенным действием обладает алкофен МБ (установлено на крысах и гвинейских свинках); 1 мг/кг неозона Д не влияет на развитие беременности. Согласно Л. В. Марцонь и Р. А. Рязановой (1977), его введение приводит к снижению способности к оплодотворению, разрушению плода и стерильности. У новорожденных крысят наблюдаются искривление хвоста и задержка роста. Изменение сроков беременности может вызывать цимат.
Неоднократно подтверждена способность фталатных пластификаторов вызывать у млекопитающих тератогенный и эмбриотоксический эффект. При нанесении на кожу 1,25 г/кг диметилфталата С. Е. Глейберман и соавторы (1975) наблюдали резорбцию эмбрионов и гибель новорожденных крыс. A. R. Singh и соавторы (1972) обнаружили вредное влияние диэтилфталата и ди(2-метоксиэтил)-фталата на развитие беременности у животных. Выраженным тератогенным действием на куриных эмбрионах обладает ди(2-бутоксиэтил)фталат (S. Haberman и соавт., 1968). Дибутилфталат и диоктилфталат в больших дозах нарушают развитие эмбрионов, вызывают появление уродств. Т. М. Зинченко (1980) отмечала эти эффекты при введении ДБФ и ДОФ в дозах 20 и 200 мг/кг.
Эмбриотоксическое и тератогенное действие оловоорганических стабилизаторов ПВХ - диизооктилтиогликолята дибутилолова описано В. О. Шефтелем и Л. В. Марцонь (1976), а дибензилоло-BO-S1S"-бис (изооктилмеркаптоацетата; Н. Mazur, 1971).
Слабое эмбриотоксическое действие присуще нафталину (пороговая доза - 0,75 мг/кг; М. R. Plasterer и соавт., 1985). Снижение фертильности и тератогенный эффект вызывает этиленгликоль (G. С. Lamb и соавт., 1985). Эмбриотоксический эффект ионола (50 и 500 мг/кг) обнаружен на белых крысах, а тератогенное действие - на мышах (A. Gori, 1983).
При нанесении на кожу гвинейских свинок тератогенными свойствами обладают также такие компоненты ПМ, как о-фенилендиамин (D. A. Karnofsky, С. R. Lacon, 1962), триэтилентетрамин (V. A. Wayton, 1978), гидразин (R. Stoll и соавт., 1967). Эмбриональное развитие животных нарушают трихлорбутадиен (М. С. Гижларян и соавт., 1980), пиперидин и полиэтиленполиамин (В. И. Антонова и соавт., 1977). Однако В. О. Шефтель и соавторы (1976) такого действия ПЭПА не обнаруживали. Диметилацтамид эмбриотоксическую активность проявляет при введении белым крысам в дозе 20 мг/кг, а доза 0,02 мг/кг является пороговой (М. В. Богданов и соавт., 1980).
При изучении ряда поверхностно-активных соединений на мышах, крысах и кроликах установлен выраженный эмбриотоксический эффект, а в некоторых случаях - тератогенный (С. A. Palmer, 1975).

Эмбриотоксическое действие возникает в первые 3 нед. после оплодотворения и заключается в отрицательном влиянии лекарств на зиготу и бластоцист, находящиеся в просвете фаллопиевых труб или в полости матки (до имплантации) и питающиеся маточным секретом.

Повреждение и, как правило, гибель бластоциста вызывают следующие вещества: гормоны (эстрогены, прогестагены, соматотропный гормон, дезоксикортикостерона ацетат), антиметаболиты (меркаптопурин, фторурацил, цитарабин и др.), ингибиторы углеводного (йодацетат) и белкового (актиномицин) обмена, салицилаты, барбитураты, сульфаниламиды, фторсодержащие вещества, антимитотические средства (колхицин и др.), никотин.

Тератогенное действие может развиться от начала 4-й до конца 8-й недели беременности и приводит к различным нарушениям нормального развития плода, возникновению аномалий внутренних органов и систем. Вариант порока зависит от срока беременности (от того, какие органы закладываются и интенсивно формируются в период приема лекарственного средства).

Вероятность развития порока зависит не только от назначаемого беременной женщине препарата, но и от ее возраста (вероятность возрастает, если беременная моложе 17 и старше 35 лет), от состояния ее здоровья, функционирования органов элиминации лекарств, дозы препарата, длительности его назначения, генетической предрасположенности к развитию того или иного порока.

По степени опасности развития тератогенного эффекта лекарственные средства делят на 3 группы. К 1-й группе веществ, чрезвычайно опасных для развивающегося плода и поэтому абсолютно противопоказанных беременным женщинам, относятся: талидомид (контерган), антифолиевые препараты (метотрексат, три метоприм), андрогены, диэтилстильбэстрол и гормональные пероральные противозачаточные средства.

Прием последних рекомендуют прекращать не менее чем за 6 мес. до планируемой беременности. Ко 2-й группе несколько менее опасных для плода средств относят лекарства, назначаемые больным эпилепсией, сахарным диабетом, злокачественными новообразованиями, и некоторые другие.

«Справочник педиатра по клинической фармакологии», В.А. Гусель

Хронически протекающие заболевания, безусловно, являются фактором, предрасполагающим к возникновению тератогенного эффекта, однако велика и потенциальная опасность тератогенного действия самих лекарственных средств этой группы, к которой принадлежат: противоэпилептические средства (дифенин, гексамидин, фенобарбитал, вальпроевая кислота), алкилирующие противоопухолевые препараты (эмбихин, допан, сарколизин, хлорбутин), пероральные противодиабетические средства (бутамид, букарбан, цикламид, глибенкламид, хлорпропамид, глибутид), а также этанол, прогестерон. К 3-й…


Дозирование лекарств В соответствии с частотой и тяжестью нежелательных реакций, возникающих при назначении лекарств новорожденным, фармакологические средства делят на 3 группы: показанные (1-я), применяемые с осторожностью (2-я) и противопоказанные (3-я) новорожденным. Реакция на лекарственное вещество организма детей разного возраста зависит от такого большого количества факторов, что a priori непредсказуема. В связи с этим дозирование лекарств…


Для решения вопроса о возможном действии лекарства на вскармливаемого грудным молоком ребенка важно знать: величину показателя отношения концентрации препарата в молоке к таковой в плазме крови матери; при коэффициенте больше единицы опасность нежелательного влияния на ребенка сильнодействующих веществ вполне реальна (величины коэффициента для некоторых препаратов и метод ориентировочного расчета показателя для лекарств с неизвестным коэффициентом…


Ниже представлены величины показателя молоко/плазма крови для некоторых часто применяемых лекарственных средств: Ацетилсалициловая кислота 0,6…1 Бутадион 0,1 Неодикумарин 0,15 Карбамазепин 0,4…0,7 Фенобарбитал 0,7 Тиопентал-натрий 1 Хлоралгидрат 0,5 Сибазон (диазепам) 0,1 Мепротан (мепробамат) 2…4 Спирт этиловый 1 Имизин 0,1…0,5 Лития карбонат 0,3…0,7 Дигоксин 0,85 Метотрексат 0,1 Аминазин 0,3…0,5 Хинидин 0,1…0,2 Левомицетин 0,55 Циклосерин 0,7 Эритромицин 2,75…


Если пренебречь показателями жирорастворения и связывания лекарственного средства с белками плазмы крови, то можно приблизительно рассчитать коэффициент для лекарственного средства. Он необходим для подсчета той части суточной дозы назначенного матери лекарственного средства, которую может получить за сутки вскармливаемый грудью ребенок. Для расчета необходимо знать рКа препарата и использовать известные величины рН крови и грудного молока….


Канцерогенами называются химические вещества, воздействие которых достоверно увеличивает частоту возникновения опухолей или сокращает период их развития у человека или животных.

Судьба этих веществ в организме, как и других ксенобиотиков, подчиняется общим законам токсикокинетики. Однако в действии на организм им присущ ряд особенностей. Так, развивающиеся под их влиянием эффекты носят отсроченный характер и являются следствием, как правило, длительного кумулятивного действия в малых дозах. Активность рассматриваемой группы веществ в отношении молекул - носителей наследственности в известной степени уникальна.

В настоящее время около 20 веществ, достаточно широко используемых в промышленности, отнесены к числу канцерогенов для человека (однако этот список постоянно увеличивается). Кроме того, убедительно доказано, что работа на целом ряде производств сопряжена с риском канцерогенеза, хотя конкретные причины (вещества), провоцирующие процесс не установлены. Это производства по синтезу аминов (рак мочевого пузыря), обработка изделий из хрома (рак лёгких), кадмия (рак простаты), никеля (рак слизистой полости носа и лёгких), резины (рак легких), гематитовые шахты (рак лёгких). Данные о смертности от новообразований, сопряженных с профессиональной деятельностью противоречивы. По оценкам специалистов США она может составлять от 5 до 20% всех смертей от рака в этой стране.

В ряде случаев канцерогенез есть результат сочетанного действия ксенобиотиков. Так, ведущим канцерогенным фактором для человека является табачный дым. Показано, что около 90% случаев рака лёгких есть следствие неумеренного курения. До 30% смертей от рака мочевого пузыря и желудочно-кишечного тракта также связано с этой привычкой.

Канцерогенными свойствами обладают некоторые вещества природного происхождения, например афлатоксины (провоцируют развитие рака печени). Высокое содержание афлатоксинов отмечается в продуктах питания, потребляемых жителями некоторых регионов мира (Африка, Восточная Азия). Здесь эти вещества поступают в организм человека в дозах, во много раз превосходящих канцерогенные для экспериментальных животных.

Индукция опухолевого роста химическими веществами - сложный, многостадийный процесс, включающий взаимодействие факторов окружающей среды и эндогенных факторов. Особенностью химического канцерогенеза является длительный период, отделяющий воздействие вещества, вызывающего опухолевый рост, от появления опухоли. Длительность периода не может быть объяснена медленным процессом созревания опухоли, т.е. превращением её из микро- в макрообразование. В ходе этого периода в "поврежденной" клетке осуществляются сложные процессы, течение которых иногда не возможно без действия дополнительных веществ (или факторов), приводящие, в конечном итоге, к её неопластической трансформации. Канцерогенез проходит через несколько стадий перед тем, как окончательно сформируется собственно опухоль. В эксперименте, как правило, выделяют три таких стадии развития опухоли: инициации, промоции, прогрессии.

Мутации - это наследуемые изменения генетической информации, хранящейся в ДНК клеток. Различные факторы химической и физической природы способны вызывать мутации. Наиболее изученными являются последствия действия ионизирующей радиации и таких веществ, как сернистый и азотистый иприты, эпоксиды, этиленимин, метилсульфонат и т.д. Химические вещества, способные вызывать мутации называются мутагенами.

Основными видами мутаций, вызываемых химическими веществами, являются: 1) точечная мутация, связанная с модификацией одного нуклеотида в структуре ДНК, (замещение нуклеотида, выпадение нуклеотида из цепи, включение дополнительного нуклеотида в цепь); 2) хромосомные аберрации, т.е. изменение структуры хромосом (разрывы молекул ДНК, транслокации фрагментов ДНК) или числа хромосом в клетке.

Часть химические вещества способны вызывать мутации лишь тех клеток, которые находятся в определенной фазе цикла, это так называемые цикло-специфичные вещества. Другие действуют на генетический аппарат не зависимо от того, в каком периоде клеточного цикла находится клетка (цикло-неспецифичные). Такая особенность в действии веществ определяется механизмом, посредством которого токсикант повреждает ДНК (см. выше). К числу цикло-неспецифичных принадлежат мутагены, способные вызывать химическое повреждение нуклеотидов (алкилирующие агенты и химические модификаторы нуклеотидов). Все остальные мутагены являются цикло-специфичными.

Репродуктивная функция осуществляется как сложноорганизованная последовательность физиологических процессов, протекающих в организме отца, матери, плода. Токсиканты могут оказывать неблагоприятное воздействие на любом этапе реализации функции.

Неблагоприятное действие токсикантов (и их метаболитов) на мужские и женские органы репродуктивной системы может быть обусловлено либо нарушением механизмов физиологической регуляции их функций, либо прямыми цитотоксическими эффектами.

Вещества, предположительно нарушающие репродуктивные функции:

1. Стероиды - андрогены, эстрогены, прогестины 2. Противоопухолевые препараты - алкилирующие агенты, антиметаболиты, антибиотики 3. Психоактивные препараты, вещества, действующие на ЦНС - летучие анестетики (галотан, енфлюран, метоксифлюран, хлороформ) 4. Металлы и микроэлементы - алюминий*, мышьяк, бор*, бериллий, кадмий, свинец (органические и неорганические соединения), литий, ртуть (органическккие и неорганические соединения), молибден, никель, серебро*, селен, таллий 5. Инсектициды - гексахлорбензол, карбаматы (карбарил), производные хлорбензола (метоксихлор, ДДТ), альдрин, дильдрин, ФОС (паратион), другие (хлордекон, этиленоксид, мирекс) 6. Гербициды - 2,4-Д; 2,4,5-Т Родентициды - фторацетат* 7. Пищевые добавки - афлатоксины*, циклогексиламин, диметилнитрозамин, глутамат, производные нитрофурана, нитрит натрия 8. Промышленные токсиканты - формальдегид, хлорированные углеводороды (трихлорэтилен, тетрахлорэтилен, ТХДД*, полихлорированные бензофураны*), этилендибромид, этилендихлорид, этиленоксид, этилентиомочевина, этиленхлоргидрин, анилин, мономеры пластмасс (капролактам, стирол, винилхлорид, хлоропрен), эфиры фталиевой кислоты, полициклическкие ароматические углеводороды (бенз(а)пирен), растворители (бензол, сероуглерод, этанол, эфиры гликолей, гексан, толуол, ксилол), оксид углерода, метилхлорид, диоксид азота, цианокетоны, гидразин, анилин 9. Другие продукты - этанол, компоненты табачного дыма, средства пожаротушения (трис-(2,3-дибромпропил)фосфат), радиация*, гипоксия*

* - фактор, действующий главным образом на мужчин

Основными проявлениями токсического действия химических веществ на органы и ткани, ответственные за репродуктивные функции организма, и непосредственно на плод, являются: бесплодие и тератогенез.

Существует четыре типа патологии развития плода: гибель, уродства, замедление роста, функциональные нарушения.

В ходе изучения тератогенеза, удалось выявить ряд закономерностей, среди них основными являются: 1) токсикокинетические; 2) генетической предрасположенности; 3) критических периодов чувствительности; 4) общности механизмов формирования; 5) дозовой зависимости.

Особенности токсикокинетики. Тератогенным действием на плод обладают лишь вещества, хорошо проникающие через плацентарный барьер. Многие тератогены подвергаются в организме матери или плода биоактивации

Генетическая предрасположенность. Чувствительность к тому или иному тератогену существенно различается у представителей различных видов, подвидов и даже индивидов одного и того же вида.

Критические периоды чувствительности. Период наивысшей чувствительности к тератогенам, в котором они оказывают наиболее значимое действие на плод и индуцируют появление грубых морфологических дефектов, это период закладки зародышевых листков и начала органогенеза (первые 12 недель эмбрионального развития). Период органогенеза начинается после дифференциации зародышевых листков и завершается формированием основных органов. За периодом органогенеза следуют периоды гистогенеза и функционального созревания органов и тканей плода.

Механизмы формирования. Различные вещества с различным механизмом токсичности, при действии на плод в один и тот же критический период, часто вызывают одинаковые виды нарушений. Из этого следует, что значимым является не столько механизм действия токсиканта, сколько сам факт повреждения клеточных элементов на определенном этапе развития организма, инициирующий во многом одинаковый каскад событий, приводящих к уродствам.

Дозовая зависимость действия. Большинство тератогенов имеют некий порог дозовой нагрузки, ниже которого вещество не проявляет токсических свойств. По всей видимости, появление дефектов развития предполагает повреждение некоего критического количества клеток, выше того, которое эмбрион в состоянии быстро компенсировать. Если количество поврежденных клеток будет ниже этого уровня, действие токсиканта пройдет без последствий, если значительно выше - произойдет гибель плода.


Методы лабораторного контроля воздушного бассейна, водной среды и почвы за содержанием основных токсических веществ

Вода является одним из самых ценных природных ресурсов нашей планеты, без нее невозможно существование человечества. Антропогенное загрязнение естественных водоемов началось много веков назад, постоянно возрастало с развитием цивилизации и в настоящее время достигло планетарных масштабов. Основные загрязнители: неорганические соединения; летучие органические соединения; органические соединения средней летучести; полициклические ароматические углеводороды; пестициды, гербициды и бифенилы; фенолы; анилины и нитроароматические соединения; бензидины; оловоорганические соединения; другие соединения. При проведении исследования вод различного происхождения: отбор пробы; пробоподготовка; обнаружение и идентификация ожидаемых компонентов; измерение концентрации найденных компонентов. Методы анализа, используемые в современных лабораториях, занимающихся контролем окружающей среды, включают: 1.различные варианты оптических методов анализа (например, спектрофотометрия в видимой УФ- и ИК-областях, атомно-абсорбционная и эмиссионная спектрометрия); 2.хроматографические методы (газовая, жидкостная, сверхкритическая); 3.электроаналитические методы (вольтамперометрия, ионометрия и другие). Ни один из перечисленных методов не является универсальным, некоторые из них пригодны для определения только органических веществ, другие – неорганических. Мероприятия, проводимые для очистки воды : очистка поверхностных и подземных вод, методики обеззараживания питьевой воды. очистка и обеззараживание канализационных и сточных вод, оборудование и методы лабораторного контроля качества питьевой воды, реагенты, фильтрующие материалы и их влияние на эффективность очистки воды, энергосбережение в работе водоканалов, порядок и механизмы ценообразования в системе водоснабжения населения, медицинские и гигиенические аспекты водоснабжения; создание централизованной информационной базы данных по фирмам и организациям водной отрасли экономики. Показатели качества сбрасываемых сточных вод определяются на каждом выпуске их в водные объекты, а также в точках передачи в городскую канализацию. Определение концентрации загрязняющих веществ в сбрасываемых сточных водах производится постоянно или периодически путем гидрохимических анализов . Порядок лабораторного контроля за сбросом сточных вод, периодичность, время и места отбора проб устанавливаются, исходя из режима сброса загрязняющих веществ, и согласовываются с областными и Минским городским комитетами по экологии. Одновременно с отбором проб для анализов производится учет объемов сбрасываемых сточных вод. Анализ качества сбрасываемых сточных вод производится на содержание в них нефтепродуктов, взвешенных веществ, сухого остатка, сульфатов, хлоридов, фосфатов, азота аммонийного, нитратов, нитритов, СПАВ, фенолов, меди, цинка, хрома, никеля, железа, кобальта, свинца, молибдена, кадмия, роданидов, цианидов, а также других ингредиентов. Для определения годового количества загрязняющих веществ в составе сточных вод используется средневзвешенная концентрация , если одновременно с отбором проб производился учет объемов сбрасываемых сточных вод. В противном случае в расчет принимается средняя из зарегистрированных концентраций. Анализы проводятся в гидрохимлаборатории.Лабораторный контроль за загрязнением атмосферного воздуха вокруг предприятия используется для оценки эффективности мероприятий, используемых для снижения экологической нагрузки. Естественно, что такой контроль необходим, поскольку он дает объективную информацию о реальной экологической ситуации. Установка станций слежения за состоянием атмосферного воздуха. Организация лабораторного мониторинга. Классические загрязнители - диоксид серы, диоксид азота, оксид углерода, пыль - контролируются повсеместно, специфические загрязнители атмосферы - оксид азота, сероводород, сероуглерод, фенол, формальдегид, ДМТ, динил, параксилол, метанол, аммиак, бензпирен. Лабораторный контроль за состоянием почвы показывает повышенное содержание хрома меди, никеля, цинка, кадмия, марганца. Производится забор проб в различных частях населенного пункта и в лабораторных условиях проводится анализ на содержание токсических веществ, а так же их концентрации (соответствуют ли они ПДК).


57. МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ И ОСБЕННОСТИ ФУНКЦИОНИРОВАНИЯ МЕМБРАННЫХ ОРГАНОИДОВ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ .

Эукариотическая клетка состоит из трех основных компонентов: плазматическая мембрана, ядро и цитоплазма с органоидами.Органоиды (органеллы) - постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции.

Различают: мембранные органоиды - имеющие мембранное строение, причем они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двумембранными (митохондрии, пластиды, ядро). Кроме мембранных могут быть и немембранные органоиды - не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

В основе строения всех мембранных органоидов лежит биологическая мембрана. Согласно жидкостно-мозаичной модели, мембрана – жидкая динамическая система, с мозаичным расположением белков и липидов. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков. Липиды (фосфолипиды, сфинголипиды, холестерин), составляют до 45 % массы мембран. Молекула фосфолипида состоит из полярной (гидрофильной) части (головка) и аполярного (гидрофобного) двойного углеводородного хвоста. В водной фазе молекулы фосфолипидов автоматически агрегируют хвост к хвосту, формируя каркас биологической мембраны в виде бислоя. В мембране хвосты фосфолипидов направлены внутрь бислоя, а головки обращены к наружи. Белки составляют более 50% массы мембран. Большинство мембранных белков имеет глобулярную структуру.Интегральные мембранные белки прочно встроены в липидный бислой. Их гидрофобные аминокислоты взаимодействуют с фосфатными группами фосфолипидов, а гидрофобные – с цепями жирных кислот. Примеры интегральных мембранных белков – белки ионных каналов и рецепторные белки (мембранные рецепторы). Молекула белка, проходящая через всю толщу мембраны и выступающая из нее как на наружной, так и на внутренней поверхности, - трансмембранный белок. Кэппинг – скопление интегральных белков на одном участке мембраны.Периферические мембранные белки (фибриллярные и глобулярные) находятся на одной из поверхностей клеточной мембраны и нековалентно связаны с интегральными мембранными белками. Примеры периф. мембр. белков, связанных с наружной поверхностью мембраны – рецепторные и адгезионные белки. Примеры периф. мембр. белков, связанных с внутренней поверхностью мембраны – белки цитоскелета (спектрин, анкирин, дистрофин), белки системы вторичных посредников.

Углеводы (преимущественно олигосахариды) входят в состав гликопротеинов мембраны, оставляя 2 – 10% ее массы. Цепи олигосахаридов, ковалентно связанных с гликопротеинами и гликолипидами плазмолеммы, выступают на наружной поверхности мембран клетки и формирует гликокаликс.

Основные функции плазматической мембраны: избирательная прницаемость, эндоцитоз и экзоцитоз.

Одномембранные органоиды.
1. Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой - с наружной оболочкой ядерной мембраны. Различают два вида ЭПР: шероховатый, содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков и гладкий, мембраны которого рибосом не несут.
Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая, тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций. Осуществляет синтез и расщепление углеводов и липидов, стероидных гормонов, детоксикация, депонирование ионов кальция (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.
2. Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи центриоли), образован стопкой из 3-10 уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Цистерны АГ образуют три основных компартмента: цис-сторона, транс-сторона, промежуточный компартмент. Цис-сторона более осмиофильная, включает цистерны, обращенные к расширенным элементам гранулярной эндоплазматической сети, а также небольшие транспортные пузырьки.Транс-сторона образована цистернами, обращенными к вакуолям и секреторным гранулам. На небольшом расстоянии от краевой цистерны транс-стороны лежит транс-сеть. Промежуточный компартмент включает небольшое количество цистерн между цис- и транс-сторонами.
Функции: 1. Модификация секреторного продуктв; ферменты АГ гликозилируют белки и липиды; образующиеся гликопротеины, протеогликаны, гликолипиды и сульфатированные гликозааминогликаны предназначены для последующей секреции; 2. Концентрирование секреторных продуктов происходит в конденсирующих вакуолях, расположенных на транс-стороне. 3. Упаковка секреторного продукта, образование участвующих в экзоцитозе секреторных гранул; 4. Сортировка и упаковка секреторного продукта, образование секреторных гранул.
3. Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов (рибонуклеазы, катепсины, сульфатазы, фосфолипазы, гликозидазы и др.) активных в слабокислой среде, для поддержания которой в мембрану лизосомы встроен протонный насос (Н + , К + -АТФаза). Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты.
Различают: первичные лизосомы - лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме и вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями):
Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки. Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной).
4. Пероксисомы – мембранные пузырьки размером 0,1-0,5 мкм с электронноплотной сердцевиной. В составе мембраны органеллы находятся специфические белки – пероксины, а в матриксе – матричные белки (каталаза, пероксидаза), катализирующие анаболические (биосинтез желчных кислот) и катаболические (β-окисление длинных цепей жирных кислот, деградация ксенобиотиков) процессы. Все компоненты пероксисом поступают из цитозоля. Продолжительность жизни пероксисом 5-6 суток. Новые органеллы возникают из предшествующих путем их деления.

5. Вакуоли - это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. - накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.

Двухмембранные органоиды.

1. Ядро клетки играет основную роль в ее жизнедеятельности.
Ядро окружено двойной мембраной, в состав ядерной оболочки входят наружная и внутренняя ядерные мембраны, перинуклеарные цистерны, ядерная пластинка, ядерные поры. На поверхности наружной ядерной мембраны расположены рибосомы, где синтезируются белки, поступающие в перинуклеарные цистерны, рассматриваемые как часть гранулярного ЭПР. Внутр. ядерная мембрана отделена от содержимого ядра ядерной пластинкой. Ядерная пластинка толщиной 80 300 нм участвует в организации ядерной оболочки и перинуклеарного хроматина, может разделять комплексы ядерных пор и дезинтегрировать ядро в ходе митоза; содержит белки промежуточных филаментов – ламины А, В, С. Ядерная пора имеет диаметр 80 – 150 нм, содержит канал поры и комплекс ядерной поры. Содержимое ядра сообщается с цитозолем через ядерные поры, осуществляющие диффузию воды, ионов и транспорт макромолекул между ядром и цитоплазмой. Перенос макромолекул через ядерные поры осуществляют транспортные белки – кариоферины. Внутри ядра находится хроматин - спирализованные участки хромосом. Различают гетерохроматин (транскрипционно неактивный, конденсированный хроматин интерфазного ядра) и эухроматин (транскрипционно активный). Каждая хромосома содержит одну длинную молекулу ДНК и ДНК-связывающие белки; хроматин в составе хромосомы образует многочисленные петли. Хромосома состоит из структурных единиц – нуклеосом – сферических структур диаметром 10 нм.

Ядерный матрикс содержит сеть рибонуклеопротеинов, ядерные рецепторы, ферменты (АТФаза, ГТФаза, ДНК- и РНК-полимеразы) и множество других молекул, часто образующих ассоциации – ядерные частицы. В матриксе происходит транскрипция и процессинг мРНК и рРНК.

Ядрышко – компактная структура в ядре интерфазных клеток. Различают в ядрышке фибриллярный центр (ДНК, кодирующая рРНК) и фибриллярный компонент, где протекают ранние стадии образования предшественников рРНК, состоит из тонких рибонуклеопротеиновых фибрилл и транскрипционно активных участков ДНК; гранулярный компанент, содержит зрелые предшественники рибосомных субединиц, имеющих диаметр 15 нм.. Основные функции ядрышка – синтез рРНК и образование субединиц рибосом.
Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов. .
2. Митохондрии. Двухмембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Длина митохондрий 1,5-10 мкм, диаметр - 0,25-1,00 мкм. Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственный геном (кольцевая ДНК, мРНК, тРНК, рРНК). Наружная мембрана митохондрий гладкая, проницаема для многих молекул. В межмембранном пространстве накапливаются ионы Н + , выкачиваемые из матрикса, что создает протонный градиент концентрации по обе стороны внутр. мембраны. Внутренняя мембрана образует многочисленные впячивания – кристы, их число может колебаться в зависимости от функций клетки, они увеличивают поверхность внутренней мембраны. Внутр. мембрана содержит транспортные системы для переноса веществ (АТФ, АДФ, Рi, пирувата, дифосфатов и др.) в обоих напрвлениях и комплексы цепи переноса электронов, связанные с ферментами окислительного фосфорилирования.
Внутреннее пространство митохондрий заполнено матриксом. В матриксе содержатся кольцевая молекула митохондриальной ДНК, специфические иРНК, тРНК и рибосомы (прокариотического типа), осуществляющие автономный биосинтез части белков, входящих в состав внутренней мембраны. Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления.
Функции митохондрий – окисление в цикле Кребса, транспорт электронов, хемиосмотическое сопряжение, фосфорилирование АДФ, сопряжение окисления и фосфорилирования, функцию контроля внутриклеточной концентрации кальция, синтез белков, образование тепла. Велика их роль в апоптозе.

3. Пластиды. Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках не-окрашенных частей растений, хромопласты - окрашенные пластиды желтого, красного и оранжевого цвета, хлоропласты - зеленые пластиды.
Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит превращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету) обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.
Хлоропласты. Основная функция – фотосинтез. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результате образования выпячиваний внутренней мембраны, возникает система ламелл и тилакоидов. Внутренняя среда хлоропластов - строма - содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии.

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду - так совершается обмен веществ.

  • II. Перепишите из данных предложений те, действие которых происходило в прошлом, и переведите их
  • III. Из данных предложений выберите те, действие в которых происходило в прошлом, и переведите их
  • Транс в трансе": как структурированная амнезия и полное замешательство ослабляют действие сознательных установок и затверженных ограничений

  • Просмотров